Do we need covalent bonding of Si nanoparticles on graphene oxide for Li-ion batteries?
نویسندگان
چکیده
In this manuscript, we report our investigation of anode materials for Li-ion batteries based on silicon-graphene oxide composites. Previous reports in the literature on silicon-graphene oxide (GO) composites as anodes have shown a large discrepancy between the electrochemical properties, mainly capacity and coulombic efficiency. In our research, the surface chemistry of Si nanoparticles has been functionalized to yield a chemical bond between the Si and GO, a further annealing step yields a Si-reduced GO (Si-rGO) composite while controlled experiments have been carried on mechanical mixing of GO and Si. For all samples, including a simple mixing of Si nanoparticles and GO, a high specific capacity of 2000 mA h g(Si)(-1) can be achieved for 50 cycles. The main difference between the samples can be observed in terms of coulombic efficiency, which will determine the future of these composites in full Li-ion cells. The Si-rGO composite shows a very low capacity fading and a coulombic efficiency above 99%. Furthermore, the Si-rGO composite can be cycled at very high rate to 20 C (charge in 3 minutes).
منابع مشابه
Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by g...
متن کاملElectrochemical properties of iron oxide nanoparticles as an anode for Li-ion batteries
The synthesis of iron oxide nano-particles by direct thermal decomposition was studied. Simultaneous thermal analysis and Fourier transform infrared spectroscopy results confirmed the formation of iron-urea complex, and disclosed iron oxide formation mechanism. Calcination of the iron-urea complex at 200°C and 250°C for 2 hrs. resulted in the formation of maghemite along with hematite as a seco...
متن کاملElectrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)
PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...
متن کاملFacile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries.
Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The as-obtained Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium-ion batteries.
متن کاملGraphene-based nanocomposite anodes for lithium-ion batteries.
Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 173 شماره
صفحات -
تاریخ انتشار 2014